Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 632
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256063

RESUMO

'Inner mitochondrial membrane peptidase 2 like' (IMMP2L) is a nuclear-encoded mitochondrial peptidase that has been conserved through evolutionary history, as has its target enzyme, 'mitochondrial glycerol phosphate dehydrogenase 2' (GPD2). IMMP2L is known to cleave the mitochondrial transit peptide from GPD2 and another nuclear-encoded mitochondrial respiratory-related protein, cytochrome C1 (CYC1). However, it is not known whether IMMP2L peptidase activates or alters the activity or respiratory-related functions of GPD2 or CYC1. Previous investigations found compelling evidence of behavioural change in the Immp2lKD-/- KO mouse, and in this study, EchoMRI analysis found that the organs of the Immp2lKD-/- KO mouse were smaller and that the KO mouse had significantly less lean mass and overall body weight compared with wildtype littermates (p < 0.05). Moreover, all organs analysed from the Immp2lKD-/- KO had lower relative levels of mitochondrial reactive oxygen species (mitoROS). The kidneys of the Immp2lKD-/- KO mouse displayed the greatest decrease in mitoROS levels that were over 50% less compared with wildtype litter mates. Mitochondrial respiration was also lowest in the kidney of the Immp2lKD-/- KO mouse compared with other tissues when using succinate as the respiratory substrate, whereas respiration was similar to the wildtype when glutamate was used as the substrate. When glycerol-3-phosphate (G3P) was used as the substrate for Gpd2, we observed ~20% and ~7% respective decreases in respiration in female and male Immp2lKD-/- KO mice over time. Together, these findings indicate that the respiratory-related functions of mGpd2 and Cyc1 have been compromised to different degrees in different tissues and genders of the Immp2lKD-/- KO mouse. Structural analyses using AlphaFold2-Multimer further predicted that the interaction between Cyc1 and mitochondrial-encoded cytochrome b (Cyb) in Complex III had been altered, as had the homodimeric structure of the mGpd2 enzyme within the inner mitochondrial membrane of the Immp2lKD-/- KO mouse. mGpd2 functions as an integral component of the glycerol phosphate shuttle (GPS), which positively regulates both mitochondrial respiration and glycolysis. Interestingly, we found that nonmitochondrial respiration (NMR) was also dramatically lowered in the Immp2lKD-/- KO mouse. Primary mouse embryonic fibroblast (MEF) cell lines derived from the Immp2lKD-/- KO mouse displayed a ~27% decrease in total respiration, comprising a ~50% decrease in NMR and a ~12% decrease in total mitochondrial respiration, where the latter was consistent with the cumulative decreases in substrate-specific mediated mitochondrial respiration reported here. This study is the first to report the role of Immp2l in enhancing Gpd2 structure and function, mitochondrial respiration, nonmitochondrial respiration, organ size and homeostasis.


Assuntos
Atrofia Bulboespinal Ligada ao X , Glicerol , Glicerofosfatos , Feminino , Masculino , Animais , Camundongos , Fibroblastos , Ácido Glutâmico , Glicerolfosfato Desidrogenase/genética , Peptídeo Hidrolases , Fosfatos
2.
Biochimie ; 214(Pt B): 199-215, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37481063

RESUMO

Glycerol 3-phosphate (G3P) shuttle is composed of mGPDH and cGPDH and serves as the interface between carbohydrate- and lipid-metabolism. Recently, these metabolic enzymes have been implicated in type II diabetes mellitus but the detailed kinetic parameters and crystal structure of human mGPDH is unknown, though fewer studies on cGPDH are available. To characterize these enzymes, the human mGPDH and cGPDH genes were optimized and cloned into the pET-SUMO vector and pET-24a(+) vector, respectively, and over-expressed in Escherichia coli BL21 (DE3). However, SUMO-mGPDH was expressed as inclusion bodies. Hence, various culture parameters, solubilizing agents and expression vectors were used to solubilize the protein but they did not produce functional SUMO-mGPDH. Over-expression of SUMO-mGPDH along with molecular chaperone (pG-KJE8) produced a functional SUMO-mGPDH. The functional SUMO-mGPDH was purified and characterized using NAD+/NADH redox method. cGPDH was also over-expressed and purified for its characterization. DLS analysis and CD spectra of the purified proteins were performed. The mGPDH was a monomeric enzyme with MW of ∼74 kDa and displayed optimal activity in the Tris-HCl buffer (pH 7.4); while, cGPDH was a homodimer with a monomeric MW of ∼37 kDa and showed optimal activity in imidazole buffer (pH 8.0). The Kmapp was 0.475 mM for G3P, and 0.734 mM for DHAP. These methods may be used to characterize these enzymes to understand their role in metabolic disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Glicerolfosfato Desidrogenase , Humanos , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo , NAD/metabolismo , Oxirredução
3.
J Pediatr Endocrinol Metab ; 36(7): 704-707, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37211761

RESUMO

OBJECTIVES: Transient infantile hypertriglyceridemia (HTGTI) is caused by mutations in the glycerol-3-phosphate dehydrogenase 1 (GPD1) gene. HTGTI is characterized by hypertriglyceridemia, hepatomegaly, hepatic steatosis and fibrosis in infancy. Here, we reported first Turkish HTGTI patient with a novel mutation of GPD1, having hypertriglyceridemia, hepatomegaly, growth retardation and hepatic steatosis. He is the first case who needs transfusion until 6th month in GPD1. CASE PRESENTATION: A 2-month-27-day-old boy, who had growth retardation, hepatomegaly and anemia suffered to our hospital with vomiting. Triglyceride level was 1603 mg/dL (n<150). Liver transaminases were elevated and hepatic steatosis was developed. He needed transfusion with erythrocyte suspension until 6th month. Etiology could not be elucidated by clinical and biochemical parameters. A novel homozygous c.936_940del (p.His312GlnfsTer24) variant was detected in the GPD1 gene by Clinical Exome Analysis. CONCLUSIONS: GPD1 deficiency should be investigated in the presence of unexplained hypertriglyceridemia and hepatic steatosis in children especially in infants.


Assuntos
Fígado Gorduroso , Hipertrigliceridemia , Humanos , Lactente , Masculino , Glicerolfosfato Desidrogenase/genética , Transtornos do Crescimento , Hepatomegalia/genética , Hipertrigliceridemia/complicações , Hipertrigliceridemia/genética , Mutação
4.
Mol Cell ; 83(8): 1340-1349.e7, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37084714

RESUMO

The glycerol-3-phosphate shuttle (G3PS) is a major NADH shuttle that regenerates reducing equivalents in the cytosol and produces energy in the mitochondria. Here, we demonstrate that G3PS is uncoupled in kidney cancer cells where the cytosolic reaction is ∼4.5 times faster than the mitochondrial reaction. The high flux through cytosolic glycerol-3-phosphate dehydrogenase (GPD) is required to maintain redox balance and support lipid synthesis. Interestingly, inhibition of G3PS by knocking down mitochondrial GPD (GPD2) has no effect on mitochondrial respiration. Instead, loss of GPD2 upregulates cytosolic GPD on a transcriptional level and promotes cancer cell proliferation by increasing glycerol-3-phosphate supply. The proliferative advantage of GPD2 knockdown tumor can be abolished by pharmacologic inhibition of lipid synthesis. Taken together, our results suggest that G3PS is not required to run as an intact NADH shuttle but is instead truncated to support complex lipid synthesis in kidney cancer.


Assuntos
Glicerol-3-Fosfato Desidrogenase (NAD+) , Neoplasias Renais , Lipídeos , Humanos , Glicerol/metabolismo , Glicerol-3-Fosfato Desidrogenase (NAD+)/genética , Glicerol-3-Fosfato Desidrogenase (NAD+)/metabolismo , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Lipídeos/biossíntese , NAD/metabolismo , Oxirredução , Fosfatos/metabolismo
5.
Appl Microbiol Biotechnol ; 107(7-8): 2423-2436, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36811707

RESUMO

Industrial fungi need a strong environmental stress tolerance to ensure acceptable efficiency and yields. Previous studies shed light on the important role that Aspergillus nidulans gfdB, putatively encoding a NAD+-dependent glycerol-3-phosphate dehydrogenase, plays in the oxidative and cell wall integrity stress tolerance of this filamentous fungus model organism. The insertion of A. nidulans gfdB into the genome of Aspergillus glaucus strengthened the environmental stress tolerance of this xerophilic/osmophilic fungus, which may facilitate the involvement of this fungus in various industrial and environmental biotechnological processes. On the other hand, the transfer of A. nidulans gfdB to Aspergillus wentii, another promising industrial xerophilic/osmophilic fungus, resulted only in minor and sporadic improvement in environmental stress tolerance and meanwhile partially reversed osmophily. Because A. glaucus and A. wentii are phylogenetically closely related species and both fungi lack a gfdB ortholog, these results warn us that any disturbance of the stress response system of the aspergilli may elicit rather complex and even unforeseeable, species-specific physiological changes. This should be taken into consideration in any future targeted industrial strain development projects aiming at the fortification of the general stress tolerance of these fungi. KEY POINTS: • A. wentii c' gfdB strains showed minor and sporadic stress tolerance phenotypes. • The osmophily of A. wentii significantly decreased in the c' gfdB strains. • Insertion of gfdB caused species-specific phenotypes in A. wentii and A. glaucus.


Assuntos
Aspergillus nidulans , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/farmacologia , Glicerolfosfato Desidrogenase/genética , Estresse Fisiológico , Fenótipo
6.
J Biosci Bioeng ; 135(5): 375-381, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36841726

RESUMO

In this study, glycerate was produced from glucose using engineered Escherichia coli BW25113. Plasmid pSR3 carrying gpd1 and gpp2 encoding two isoforms of glycerol-3-phosphate dehydrogenase from Saccharomyces cerevisiae and plasmid pLB2 carrying aldO encoding alditol oxidase from Streptomyces violaceoruber were introduced into E. coli to enable the production of glycerate from glucose via glycerol. Disruptions of garK and glxK genes in the E. coli genome were performed to minimize the consumption of glycerate produced. As a result, E. coli carrying these plasmids could produce nearly three times higher concentration of glycerate (0.50 ± 0.01 g/L) from 10 g/L glucose compared to E. coli EG_2 (0.14 ± 0.02 g/L). In M9 medium, disruption of garK and glxK resulted in an impaired growth rate with low production of glycerate, while supplementation of 0.5 g/L casamino acids and 0.5 g/L manganese sulfate to the medium replenished the growth rate and elevated the glycerate titer. Further disruption of glpF, encoding a glycerol transporter, increased the glycerate production to 0.80 ± 0.00 g/L. MR2 medium improved the glycerate production titers and specific productivities of E. coli EG_4, EG_5, and EG_6. Upscale production of glycerate was carried out in a jar fermentor with MR2 medium using E. coli EG_6, resulting in an improvement in glycerate production up to 2.37 ± 0.46 g/L with specific productivity at 0.34 ± 0.11 g-glycerate/g-cells. These results indicate that E. coli is an appropriate host for glycerate production from glucose.


Assuntos
Aquaporinas , Proteínas de Escherichia coli , Escherichia coli/genética , Glicerol , Glucose , Saccharomyces cerevisiae/genética , Glicerolfosfato Desidrogenase/genética , Fermentação , Engenharia Metabólica/métodos , Aquaporinas/genética , Proteínas de Escherichia coli/genética
7.
Theranostics ; 13(2): 438-457, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632231

RESUMO

Rationale: Despite growing evidence for mitochondria's involvement in cancer, the roles of specific metabolic components outside the respiratory complex have been little explored. We conducted metabolomic studies on mitochondrial DNA (mtDNA)-deficient (ρ0) cancer cells with lower proliferation rates to clarify the undefined roles of mitochondria in cancer growth. Methods and results: Despite extensive metabolic downregulation, ρ0 cells exhibited high glycerol-3-phosphate (G3P) level, due to low activity of mitochondrial glycerol-3-phosphate dehydrogenase (GPD2). Knockout (KO) of GPD2 resulted in cell growth suppression as well as inhibition of tumor progression in vivo. Surprisingly, this was unrelated to the conventional bioenergetic function of GPD2. Instead, multi-omics results suggested major changes in ether lipid metabolism, for which GPD2 provides dihydroxyacetone phosphate (DHAP) in ether lipid biosynthesis. GPD2 KO cells exhibited significantly lower ether lipid level, and their slower growth was rescued by supplementation of a DHAP precursor or ether lipids. Mechanistically, ether lipid metabolism was associated with Akt pathway, and the downregulation of Akt/mTORC1 pathway due to GPD2 KO was rescued by DHAP supplementation. Conclusion: Overall, the GPD2-ether lipid-Akt axis is newly described for the control of cancer growth. DHAP supply, a non-bioenergetic process, may constitute an important role of mitochondria in cancer.


Assuntos
Glicerolfosfato Desidrogenase , Mitocôndrias , Neoplasias , Proteínas Proto-Oncogênicas c-akt , Metabolismo Energético , Éteres/metabolismo , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo , Mitocôndrias/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Camundongos , Neoplasias/enzimologia , Neoplasias/patologia , Humanos
8.
Cells Dev ; 173: 203824, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36592694

RESUMO

We previously reported that knocking down GPD2 (glycerol-3-phosphate dehydrogenase 2), responsible for the glycerol-phosphate shuttle, causes human hepatocarcinoma-derived HuH-7 cells, lowering the cancer stemness. After examining whether GPD2 expression in the other cell lines could affect their cancer stemness, this study showed that human neuroblastoma-derived SH-SY5Y cells also lower the ability of sphere formation by knocking down GPD2. This suggests that GPD2 relates to the common mechanism for maintaining cancer stem cells, as in the cases like SH-SY5Y and HuH-7 cells. In addition, knocking down GPD2 in SH-SY5Y cells showed a morphological change and increasing tendency of neuronal marker genes, including GAP43, NeuN, and TUBB3, indicating that GPD2 may contribute to not only cancer but also neural stem cell maintenance. After all, GPD2 may play a role in maintaining cancer and neural stemness, although further rigorous studies are essential to conclude this. It is expected that GPD2 will be a novel target gene for cancer therapy, stem cell research, and development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neuroblastoma , Humanos , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo
9.
Medicine (Baltimore) ; 101(40): e30905, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36221354

RESUMO

BACKGROUND: The aim of this study was to find underlying genes and their interaction mechanism crucial to the polycystic ovarian syndrome (PCOS) by analyzing differentially expressed genes (DEGs) between PCOS and non-PCOS subjects. METHODS: Gene expression data of PCOS and non-PCOS subjects were collected from gene expression omnibus (GEO) database. GEO2R were used to calculating P value and logFC. The screening threshold of DEGs was P < .05 and | FC | ≥ 1.2. GO annotation and Kyoto encyclopedia of genes and genomes (KEGG) signaling pathway enrichment analysis was performed by using DAVID (2021 Update). The protein-protein interaction (PPI) network of DEGs was constructed by using the STRING database, and the hub genes were recognized through Hubba plugin of Cytoscape software. RESULTS: PCOS and non-PCOS subjects shared a total of 174 DGEs, including 14 upregulated and 160 downregulated genes. The GO biological processes enriched by DEGs mainly involved actin cytoskeleton organization, positive regulation of NF-κB signaling pathway, and positive regulation of canonical Wnt signaling pathway. The DEGs were significantly enriched in cytoplasm, nucleus and cytosol. Their molecular functions mainly focused on protein binding, calmodulin binding and glycerol-3-phosphate dehydrogenase activity. The PI3K/Akt signaling pathway and glycosaminoglycan biosynthesis were highlighted as critical pathways enriched by DEGs. 10 hub genes were screened from the constructed PPI network, of which EGF, FN1 and TLR4 were mainly enriched in the PI3K/Akt signaling pathway. CONCLUSION: In this study, a total of 174 DEGs and 10 hub genes were identified as new candidate targets for insulin resistance (IR) in PCOS individuals, which may provide a new direction for developing novel treatment strategies for PCOS.


Assuntos
Biologia Computacional , Síndrome do Ovário Policístico , Calmodulina/genética , Biologia Computacional/métodos , Fator de Crescimento Epidérmico/genética , Feminino , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Glicerolfosfato Desidrogenase/genética , Glicosaminoglicanos , Humanos , NF-kappa B/genética , Fosfatidilinositol 3-Quinases/genética , Síndrome do Ovário Policístico/genética , Proteínas Proto-Oncogênicas c-akt/genética , Receptor 4 Toll-Like/genética
10.
J Transl Med ; 20(1): 407, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064558

RESUMO

BACKGROUND: Atrial fibrosis plays a critical role in the development of atrial fibrillation (AF). Exosomes are a promising cell-free therapeutic approach for the treatment of AF. The purposes of this study were to explore the mechanisms by which exosomes derived from atrial myocytes regulate atrial remodeling and to determine whether their manipulation facilitates the therapeutic modulation of potential fibrotic abnormalities during AF. METHODS: We isolated exosomes from atrial myocytes and patient serum, and microRNA (miRNA) sequencing was used to analyze exosomal miRNAs in exosomes derived from atrial myocytes and patient serum. mRNA sequencing and bioinformatics analyses corroborated the key genes that were direct targets of miR-210-3p. RESULTS: The miRNA sequencing analysis identified that miR-210-3p expression was significantly increased in exosomes from tachypacing atrial myocytes and serum from patients with AF. In vitro, the miR-210-3p inhibitor reversed tachypacing-induced proliferation and collagen synthesis in atrial fibroblasts. Accordingly, miR-210-3p knock out (KO) reduced the incidence of AF and ameliorated atrial fibrosis induced by Ang II. The mRNA sequencing analysis and dual-luciferase reporter assay showed that glycerol-3-phosphate dehydrogenase 1-like (GPD1L) is a potential target gene of miR-210-3p. The functional analysis suggested that GPD1L regulated atrial fibrosis via the PI3K/AKT signaling pathway. In addition, silencing GPD1L in atrial fibroblasts induced cell proliferation, and these effects were reversed by a PI3K inhibitor (LY294002). CONCLUSIONS: Atrial myocyte-derived exosomal miR-210-3p promoted cell proliferation and collagen synthesis by inhibiting GPD1L in atrial fibroblasts. Preventing pathological crosstalk between atrial myocytes and fibroblasts may be a novel target to ameliorate atrial fibrosis in patients with AF.


Assuntos
Fibrilação Atrial , Exossomos , Glicerolfosfato Desidrogenase , Átrios do Coração , MicroRNAs , Miócitos Cardíacos , Fibrilação Atrial/complicações , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Colágeno/metabolismo , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro/metabolismo , Receptor Cross-Talk
11.
Biochem Biophys Res Commun ; 621: 1-7, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-35802941

RESUMO

Hepatic gluconeogenesis is crucial for maintaining blood glucose during starvation, and a major contributor for hyperglycemia. Cellular redox state is related to mitochondrial biology and regulates conversion of specific metabolites to glucose. General control of amino acid synthesis 5 (GCN5) like-1 (GCN5L1) is a mitochondria-enriched protein which modulates glucose and amino acid metabolism. Here we show a new regulatory mode of GCN5L1 on gluconeogenesis using lactate and glycerol. We observed GCN5L1 deletion dramatically inhibited glucose production derived from glycerol and lactate, due to increased cytosolic redox state. The underlying mechanism is that GCN5L1 directly binds to the key component of mitochondrial shuttle glycerol phosphate dehydrogenase 2 (GPD2) and modulates its activity. These results have significant implications for understanding the physiological role and regulatory mechanism of mitochondrial shuttle in diabetes development and provide a novel therapeutic potential for diabetes.


Assuntos
Gluconeogênese , Glicerolfosfato Desidrogenase , Aminoácidos/metabolismo , Glucose/metabolismo , Glicerol/metabolismo , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Oxirredução , Fosfatos/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(26): e2121987119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35749365

RESUMO

Mechanisms of defense against ferroptosis (an iron-dependent form of cell death induced by lipid peroxidation) in cellular organelles remain poorly understood, hindering our ability to target ferroptosis in disease treatment. In this study, metabolomic analyses revealed that treatment of cancer cells with glutathione peroxidase 4 (GPX4) inhibitors results in intracellular glycerol-3-phosphate (G3P) depletion. We further showed that supplementation of cancer cells with G3P attenuates ferroptosis induced by GPX4 inhibitors in a G3P dehydrogenase 2 (GPD2)-dependent manner; GPD2 deletion sensitizes cancer cells to GPX4 inhibition-induced mitochondrial lipid peroxidation and ferroptosis, and combined deletion of GPX4 and GPD2 synergistically suppresses tumor growth by inducing ferroptosis in vivo. Mechanistically, inner mitochondrial membrane-localized GPD2 couples G3P oxidation with ubiquinone reduction to ubiquinol, which acts as a radical-trapping antioxidant to suppress ferroptosis in mitochondria. Taken together, these results reveal that GPD2 participates in ferroptosis defense in mitochondria by generating ubiquinol.


Assuntos
Ferroptose , Glicerolfosfato Desidrogenase , Peroxidação de Lipídeos , Mitocôndrias , Proteínas Mitocondriais , Neoplasias , Linhagem Celular Tumoral , Ferroptose/genética , Glicerolfosfato Desidrogenase/antagonistas & inibidores , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo , Humanos , Peroxidação de Lipídeos/genética , Mitocôndrias/enzimologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
13.
G3 (Bethesda) ; 12(8)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35536221

RESUMO

As the fruit fly, Drosophila melanogaster, progresses from one life stage to the next, many of the enzymes that compose intermediary metabolism undergo substantial changes in both expression and activity. These predictable shifts in metabolic flux allow the fly meet stage-specific requirements for energy production and biosynthesis. In this regard, the enzyme glycerol-3-phosphate dehydrogenase 1 (GPDH1) has been the focus of biochemical genetics studies for several decades and, as a result, is one of the most well-characterized Drosophila enzymes. Among the findings of these earlier studies is that GPDH1 acts throughout the fly lifecycle to promote mitochondrial energy production and triglyceride accumulation while also serving a key role in maintaining redox balance. Here, we expand upon the known roles of GPDH1 during fly development by examining how depletion of both the maternal and zygotic pools of this enzyme influences development, metabolism, and viability. Our findings not only confirm previous observations that Gpdh1 mutants exhibit defects in larval development, lifespan, and fat storage but also reveal that GPDH1 serves essential roles in oogenesis and embryogenesis. Moreover, metabolomics analysis reveals that a Gpdh1 mutant stock maintained in a homozygous state exhibits larval metabolic defects that significantly differ from those observed in the F1 mutant generation. Overall, our findings highlight unappreciated roles for GPDH1 in early development and uncover previously undescribed metabolic adaptations that could allow flies to survive the loss of this key enzyme.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Aminoácidos/metabolismo , Animais , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Desenvolvimento Embrionário/genética , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo , Homeostase , Oogênese/genética
14.
PLoS Pathog ; 18(3): e1010385, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35255112

RESUMO

We have identified GpsA, a predicted glycerol-3-phosphate dehydrogenase, as a virulence factor in the Lyme disease spirochete Borrelia (Borreliella) burgdorferi: GpsA is essential for murine infection and crucial for persistence of the spirochete in the tick. B. burgdorferi has a limited biosynthetic and metabolic capacity; the linchpin connecting central carbohydrate and lipid metabolism is at the interconversion of glycerol-3-phosphate and dihydroxyacetone phosphate, catalyzed by GpsA and another glycerol-3-phosphate dehydrogenase, GlpD. Using a broad metabolomics approach, we found that GpsA serves as a dominant regulator of NADH and glycerol-3-phosphate levels in vitro, metabolic intermediates that reflect the cellular redox potential and serve as a precursor for lipid and lipoprotein biosynthesis, respectively. Additionally, GpsA was required for survival under nutrient stress, regulated overall reductase activity and controlled B. burgdorferi morphology in vitro. Furthermore, during in vitro nutrient stress, both glycerol and N-acetylglucosamine were bactericidal to B. burgdorferi in a GlpD-dependent manner. This study is also the first to identify a suppressor mutation in B. burgdorferi: a glpD deletion restored the wild-type phenotype to the pleiotropic gpsA mutant, including murine infectivity by needle inoculation at high doses, survival under nutrient stress, morphological changes and the metabolic imbalance of NADH and glycerol-3-phosphate. These results illustrate how basic metabolic functions that are dispensable for in vitro growth can be essential for in vivo infectivity of B. burgdorferi and may serve as attractive therapeutic targets.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Doença de Lyme , Carrapatos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glicerol/metabolismo , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo , Camundongos , NAD/metabolismo , Oxirredução , Fosfatos/metabolismo
16.
FASEB J ; 35(12): e22048, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34807469

RESUMO

In the heart, fatty acid is a major energy substrate to fuel contraction under aerobic conditions. Ischemia downregulates fatty acid metabolism to adapt to the limited oxygen supply, making glucose the preferred substrate. However, the mechanism underlying the myocardial metabolic shift during ischemia remains unknown. Here, we show that lipoprotein lipase (LPL) expression in cardiomyocytes, a principal enzyme that converts triglycerides to free fatty acids and glycerol, increases during myocardial infarction (MI). Cardiomyocyte-specific LPL deficiency enhanced cardiac dysfunction and apoptosis following MI. Deficiency of aquaporin 7 (AQP7), a glycerol channel in cardiomyocytes, increased the myocardial infarct size and apoptosis in response to ischemia. Ischemic conditions activated glycerol-3-phosphate dehydrogenase 2 (GPD2), which converts glycerol-3-phosphate into dihydroxyacetone phosphate to facilitate adenosine triphosphate (ATP) synthesis from glycerol. Conversely, GPD2 deficiency exacerbated cardiac dysfunction after acute MI. Moreover, cardiomyocyte-specific LPL deficiency suppressed the effectiveness of peroxisome proliferator-activated receptor alpha (PPARα) agonist treatment for MI-induced cardiac dysfunction. These results suggest that LPL/AQP7/GPD2-mediated glycerol metabolism plays an important role in preventing myocardial ischemia-related damage.


Assuntos
Aquaporinas/metabolismo , Cardiomiopatias/prevenção & controle , Glicerol/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Hipóxia/fisiopatologia , Isquemia/prevenção & controle , Lipase Lipoproteica/fisiologia , Proteínas Mitocondriais/metabolismo , Animais , Aquaporinas/genética , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Glicerolfosfato Desidrogenase/genética , Isquemia/etiologia , Isquemia/metabolismo , Isquemia/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética
17.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203569

RESUMO

Propolis is a honeybee product with various biological activities, including antidiabetic effects. We previously reported that artepillin C, a prenylated cinnamic acid derivative isolated from Brazilian green propolis, acts as a peroxisome proliferator-activated receptor γ (PPARγ) ligand and promotes adipocyte differentiation. In this study, we examined the effect of baccharin, another major component of Brazilian green propolis, on adipocyte differentiation. The treatment of mouse 3T3-L1 preadipocytes with baccharin resulted in increased lipid accumulation, cellular triglyceride levels, glycerol-3-phosphate dehydrogenase activity, and glucose uptake. The mRNA expression levels of PPARγ and its target genes were also increased by baccharin treatment. Furthermore, baccharin enhanced PPARγ-dependent luciferase activity, suggesting that baccharin promotes adipocyte differentiation via PPARγ activation. In diabetic ob/ob mice, intraperitoneal administration of 50 mg/kg baccharin significantly improved blood glucose levels. Our results suggest that baccharin has a hypoglycemic effect on glucose metabolic disorders, such as type 2 diabetes mellitus.


Assuntos
Adipócitos/metabolismo , Hiperglicemia/metabolismo , Própole/química , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo , Hiperglicemia/genética , Camundongos
18.
J Exp Clin Cancer Res ; 40(1): 188, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098990

RESUMO

BACKGROUND: Hypoxia signaling, especially the hypoxia inducible factor (HIF) pathway, is a major player in clear cell renal cell carcinoma (ccRCC), which is characterized by disorders in lipid and glycogen metabolism. However, the interaction between hypoxia and lipid metabolism in ccRCC progression is still poorly understood. METHODS: We used bioinformatic analysis and discovered that glycerol-3-phosphate dehydrogenase 1 (GPD1) may play a key role in hypoxia and lipid metabolism pathways in ccRCC. Tissue microarray, IHC staining, and survival analysis were performed to evaluate clinical function. In vitro and in vivo assays showed the biological effects of GPD1 in ccRCC progression. RESULTS: We found that the expression of GPD1 was downregulated in ccRCC tissues, and overexpression of GPD1 inhibited the progression of ccRCC both in vivo and in vitro. Furthermore, we demonstrated that hypoxia inducible factor-1α (HIF1α) directly regulates GPD1 at the transcriptional level, which leads to the inhibition of mitochondrial function and lipid metabolism. Additionally, GPD1 was shown to inhibit prolyl hydroxylase 3 (PHD3), which blocks prolyl-hydroxylation of HIF1α and subsequent proteasomal degradation, and thus reinforces the inhibition of mitochondrial function and phosphorylation of AMPK via suppressing glycerol-3-phosphate dehydrogenase 2 (GPD2). CONCLUSIONS: This study not only demonstrated that HIF1α-GPD1 forms a positive feedforward loop inhibiting mitochondrial function and lipid metabolism in ccRCC, but also discovered a new mechanism for the molecular basis of HIF1α to inhibit tumor activity, thus providing novel insights into hypoxia-lipid-mediated ccRCC therapy.


Assuntos
Carcinoma de Células Renais/genética , Glicerolfosfato Desidrogenase/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mitocôndrias/genética , Quinases Proteína-Quinases Ativadas por AMP/genética , Idoso , Animais , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Transdução de Sinais/genética , Hipóxia Tumoral
19.
Medicine (Baltimore) ; 100(17): e25697, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33907148

RESUMO

RATIONALE: Transient infantile hypertriglyceridemia (HTGTI) is a rare autosomal recessive inherited disease caused by inactivating mutations in the glycerol-3-phosphate dehydrogenase 1 gene. To date, only a few patients have been reported worldwide. The symptoms of the affected individuals present a certain degree of transient hypertriglyceridemia, hepatomegaly, elevated liver enzymes, persistent fatty liver and hepatic fibrosis in early infancy. However, the clinical characteristics and pathogenesis of this disease are remain unclear. PATIENT CONCERNS: A one month and twenty-five days old girl was admitted to hospital because of persisted jaundice and hepatomegaly for fifty days. DIAGNOSE: The girl was diagnosed with HTGTI coincident with a noval mutation in glycerol-3-phosphate dehydrogenase 1. INTERVENTION: She was advised to take low-fat diet and supplement of medium-chain fatty acids. OUTCOMES: Her jaundice was gradually normal at the age of 4 months without any treatment, and hypertriglyceridemia were normal at the age of 13 months, but still had elevated transaminases and hepatic steatosis. LESSONS: Jaundice may be a novel phenotype in HTGTI. The report contributes to the expansion of HTGTI's gene mutation spectrum and its clinical manifestations.


Assuntos
Fígado Gorduroso , Glicerolfosfato Desidrogenase/genética , Hepatomegalia , Hipertrigliceridemia , Icterícia , Diagnóstico Diferencial , Dieta com Restrição de Gorduras/métodos , Fígado Gorduroso/diagnóstico , Fígado Gorduroso/etiologia , Feminino , Testes Genéticos/métodos , Hepatomegalia/diagnóstico , Hepatomegalia/etiologia , Humanos , Hipertrigliceridemia/sangue , Hipertrigliceridemia/complicações , Hipertrigliceridemia/diagnóstico , Hipertrigliceridemia/genética , Lactente , Icterícia/diagnóstico , Icterícia/etiologia , Testes de Função Hepática , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Mutação , Transaminases/sangue
20.
FEMS Microbiol Lett ; 368(8)2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33864460

RESUMO

Glycerol (Gly) can be dissimilated by two pathways in bacteria. Either this sugar alcohol is first oxidized to dihydroxyacetone (DHA) and then phosphorylated or it is first phosphorylated to glycerol-3-phosphate (GlyP) followed by oxidation. Oxidation of GlyP can be achieved by NAD-dependent dehydrogenases or by a GlyP oxidase. In both cases, dihydroxyacetone phosphate is the product. Genomic analysis showed that Enterococcus faecium harbors numerous genes annotated to encode activities for the two pathways. However, our physiological analyses of growth on glycerol showed that dissimilation is limited to aerobic conditions and that despite the presence of genes encoding presumed GlyP dehydrogenases, the GlyP oxidase is essential in this process. Although E. faecium contains an operon encoding the phosphotransfer protein DhaM and DHA kinase, which are required for DHA phosphorylation, it is unable to grow on DHA. This operon is highly expressed in stationary phase but its physiological role remains unknown. Finally, data obtained from sequencing of a transposon mutant bank of E. faecium grown on BHI revealed that the GlyP dehydrogenases and a major intrinsic family protein have important but hitherto unknown physiological functions.


Assuntos
Di-Hidroxiacetona/metabolismo , Enterococcus faecium/enzimologia , Glicerol/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Enterococcus faecium/genética , Glicerolfosfato Desidrogenase/genética , Óperon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...